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ABSTRACT: The aim of this paper is to prove a common fixed point theorem which generalizes the result of 

A. Djoudi by weaker conditions such as compatible mappings of type(P) and iterated sequence. We 

constructed one example in which the mappings are only compatible mappings of type(P)  but not any one of  
compatible, compatible mappings of type (A), compatible mappings of  type(B). In this paper, a method of 

compatible mappings of type (P) is applied to generate a common fixed point theorem on four self maps. 

Keywords: Fixed point, self- maps, compatible mappings of type (P) and iterated sequence. 

2010 AMS (Mathematics Classification):54H25. 

1. INTRODUCTION 

Two self maps S and T of a metric space (X,d) are said to be commute if ST=TS. 

According to G. Jungck [1], Two self maps S and T of a metric space (X,d) are said to be compatible mappings if 

lim ( , ) 0
n n

n
d STx TSx

→∞
= , whenever nx< >  is a sequence in X such that lim lim

n n
n n

Sx Tx t
→∞ →∞

= =  for some 

t X∈ . 

From G. Jungck and others [2],[3],[4], Two self maps S and T of a metric space (X,d) are said to be compatible 

mappings of type(A) if lim ( , ) 0
n n

n
d STx TTx

→∞
= and lim ( , ) 0

n n
n

d TSx SSx
→∞

=  whenever nx< >  is a sequence in 

X such that lim lim
n n

n n
Sx Tx t

→∞ →∞
= = for some t X∈ . 

By H.K. Pathak and others [5],[6], Two self maps S and T of a metric space (X,d) are said to be compatible 

mappings of type(P) if lim ( , ) 0
n n

n
d SSx TTx

→∞
= , whenever nx< >  is a sequence in X such that 

lim lim
n n

n n
Sx Tx t

→∞ →∞
= = for some t X∈ . 

In view of H.K. Pathak and others [5],[6],[9],[12], Two self maps S and T of a metric space (X,d) are said to be 

weak compatible mappings of type(A) if lim ( , ) lim ( , )
n n n n

n n
d STx TTx d TSx TTx

→∞ →∞
≤  and 

lim ( , ) lim ( , )
n n n n

n n
d TSx SSx d STx SSx

→∞ →∞
≤  whenever nx< >  is a sequence in X such that 

lim lim
n n

n n
Sx Tx t

→∞ →∞
= = for some t X∈ . 

According to H.K. Pathak and M.S. Khan [6], Two self maps S and T of a metric space (X,d) are said to be 

compatible mappings of type(B) ,if 
1

lim ( , ) lim ( , ) lim ( , )
2

n n n n
n n n

d STx TTx d STx St d St SSx
→∞ →∞ →∞

 ≤ +
 

 and 

1
lim ( , ) lim ( , ) lim ( , )

2
n n n n

n n n
d TSx SSx d TSx Tt d Tt TTx

→∞ →∞ →∞

 ≤ +
 

, whenever 
n

x< >  is a sequence in X such that 

lim lim
n n

n n
Sx Tx t

→∞ →∞
= = for some t X∈ . 
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Definition: A function :[0, ) [0, )φ ∞ → ∞  is said to be a contractive modulus[9],[10],[11],[15],[16], if (0) 0φ =

and ( )t tφ < for 0t > For example, :[0, ) [0, )φ ∞ → ∞  defined by ( )t ctφ = , where 0 1c≤ <  is a contractive 

modulus. 

Definition: A real valued function φ  defined on X R⊆ is said to be Upper  semi 

continuous[12],[13],[14],[17],[18], if  

lim ( ) ( )
n

n
t tφ φ

→∞
≤ , for every sequence 

n
t< > with 

n
t t→  as n → ∞ . Every continuous function is upper semi 

continuous but not conversely. 

II. A COMMON FIXED POINT THEOREM 

Let R+ be the set of non negative real numbers and let
5: R Rφ + +→   be a function satisfying the following 

conditions: 

 ϕ  is upper semi continuous in each coordinate variable and  non decreasing. 

φ(t) = max{ϕ (0,t,0,0,t), ϕ (t,0,0,t,t), ϕ (t,t,t,2t,0), ϕ(0,0,t,t,0) } < t, for any t > 0. 
The following is the theorem proved by A. Djoudi [6]. 

2.1 Theorem: Let I, J, S and T be mappings from a complete metric space (X,d)  into itself satisfying the    
 conditions 

(2.1.1)  S(X)⊂ J(X) and T(X)⊂ I(X) 

(2.1.2)  d(Sx,Ty) ≤ max{ϕ(d(Ix,Jy),d(Ix,Sx),d(Jy,Ty), d(Ix,Ty),d(Jy,Sx))}  for all  x,y∈X. 
(2.1.3)  one of S, I, T and J is continuous 

(2.1.4)  the pairs (S,I) and (T,J) are compatible mappings of type(B). 

  Then S, I, T and J have a unique common fixed point z.  Furthermore z is the unique common fixed point of four 

mappings. 

2.2 Iterated Sequence[7],[14][15]: Suppose S, I, T and J are self maps of a metric space (X, d) satisfying the 

condition S(X) ⊆  J(X) and T(X) ⊆ I(X) . Then for any x0 ∈X,  Sx0 ∈ S(X) so that there is a x1∈ X with  Sx0 = Jx1. 

Now Tx1 ∈ T(X) and hence there is x2 ∈ X with Tx1 = Ix2. Repeating this process to each x0 ∈X, we get a sequence

n
x< >  in X such that Sx2n = Jx2n+1   and Tx2n+1   = Ix2n+2     for n ≥ 0. We shall call this sequence as an “Iterated of x0 

“relative to the four self maps S, I, T and J. 

2.3 Lemma[8]: Suppose S, I, T and J are four self maps of a metric space (X,d) for which the conditions 

 (a) S(X) ⊆  J(X) and T(X) ⊆ I(X)                                  

 (b) d(Sx,Ty)  ≤ ϕ{d(Ix,Jy), d(Ix,Sx),d(Jy,Ty), d(Ix,Ty),d(Jy,Sx)} 

Further if (X, d) is a complete metric space then for any 0x X∈ and for any of its iterated sequence 
n

x< >  

relative to four self maps, the sequence 
0 1 2 3 2 , 2 1,, , , , ...... .......

n n
Sx Tx Sx Tx Sx Tx +  converges to some point  z ∈ X              

(1). 

The converse of the lemma is not true. 

That is, suppose S, I, T and J  are  self maps  of a metric space (X,d) satisfying the conditions(a) and (b) and even for 

each iterated sequence 
n

x< >  of x0,  the sequence in (1) converges, the metric space (X,d) need not be complete. 

2.4 Example: Let 
1

0,
2

X
 

=  
 with ( , ) | |d x y x y= − . Define self maps S, I, T and J of X by 

1

2
x x

I J x= = −  if 
1

0,
2

x
 

∈  
 and  

1 1
0,

4 4

1 1 1
,

3 4 2

x x

if x

S T

if x

  
∈    

= = 
  ∈   

 

 

Clearly S(X ) ⊆  J(X) and T(X) ⊆  I(X). The iterated sequence Sx0,Tx1,Sx2,Tx3,..,Sx2n,Tx2n+1….., converges  to the 

point 1/4. But X is not a complete metric space.  

III. MAIN RESULT 

Theorem 3.1.  Let S,I,T, and J are self maps of a metric space (X, d) satisfying  the conditions  
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(3.1.1) S(X) ⊆  J(X) and T(X) ⊆  I(X)                                  

(3.1.2)  d(Sx, Ty) ≤ {ϕ(d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Jy, Sx))}   
              for all x, y in X. 

(3.1.3)  one of S, I, T, and J is continuous                

(3.1.4)  (S, I) and  (T, J) are  compatible mappings of  type-(p). 

 (3.1.5) the sequence 
0 1 2 3 2 , 2 1,, , , ,...... .......n nSx Tx Sx Tx Sx Tx +

 converges to z∈X. 

 Then S, I, T and J have a unique common fixed point in X. 

Proof:  From condition (3.1.5) 2n
Sx z→  and 2 1n

Tx z+ →  as n → ∞ .                   (1)
 

Suppose S is continuous then 2n
SSx Sz→ , 2n

SIx Sz→  asn → ∞ . 

Since the pair (S,I)  is compatible mappings of type (P) then 2 2
lim ( , ) 0

n n
n

d SSx IIx
→∞

= . This gives 2n
SSx Az→

as n → ∞ . 

Therefore 2 2
lim lim

n n
n n

SSx IIx Sz
→∞ →∞

= = .        (2) 

Put 2 2 1,
n n

x Ix y x += =  in (3.1.2), we get 

{ }2 2 1 2 2 1 2 2 2 1 2 1 2 2 1 2 1 2( , ) ( , ), ( , ), ( , ), ( , ), ( , )n n n n n n n n n n n nd SIx Tx d IIx Jx d IIx SIx d Jx Tx d IIx Tx d Jx SIxφ+ + + + + +≤

letting n → ∞  and using the conditions (1) and (2), we get 

{ }( , ) ( , ), ( , ), ( , ), ( , ), ( , )d Sz z d Sz z d Sz Sz d z z d Sz z d z Szφ≤  

{ }( , ) ( , ), 0,0, ( , ), ( , )d Az z d Sz z d Sz z d z Szφ≤  

( , ) ( , ) ( , )d Az z d Sz z d Sz zφ≤ < , a contradiction if Sz z≠ . 

Therefore Sz z= . 

Since ( ) ( )S X J X⊆ implies there exists u X∈ such that z Sz Ju= = . 

To proveTu z= , put 2 ,
n

x x y u= =  in (3.1.2), we get 

{ }2 2 2 2 2 2( , ) ( , ), ( , ), ( , ), ( , ), ( , )n n n n n nd Sx Tu d Ix Ju d Ix Sx d Ju Tu d Ix Tu d Ju Sxφ≤  

letting n → ∞ and using the conditions (1) and Sz z= , we have 

{ }( , ) ( , ), ( , ), ( , ), ( , ), ( , )d z Tu d z z d z z d z Tu d z Tu d z zφ≤  

{ }( , ) 0,0, ( , ), ( , ),0d z Tu d z Tu d z Tuφ≤  

( , ) ( , ) ( , )d z Tu d z Tu d z Tuφ≤ < , a contradiction if Tu z≠  

( , ) 0d Tu z = or Tu z= . 

Therefore Ju Tu z= = . 

Since the pair (T,J) is compatible mappings of type(P), we have 

( , ) 0d TTu JJu = . This gives ( , ) 0d Bz Tz = orTz Jz= . 

To proveTz z= , put 2 ,
n

x x y z= = in (3.1.2), we get 

{ }2 2 2 2 2 2( , ) ( , ), ( , ), ( , ), ( , ), ( , )n n n n n nd Sx Tz d Ix Jz d Ix Sx d Jz Tz d Ix Tz d Jz Sxφ≤  

letting n → ∞ and using the conditions (1) andTz Jz= , we have 

{ }( , ) ( , ), ( , ), ( , ), ( , ), ( , )d z Tz d z Tz d z z d Tz Tz d z Tz d Tz zφ≤  

{ }( , ) ( , ), 0,0, ( , ), ( , )d z Tz d z Tz d z Tz d Tz zφ≤  

( , ) ( , ) ( , )d z Tz d z Tz d z Tzφ≤ < , a contradiction if Tz z≠  

( , ) 0d Tz z = . ThereforeTz z= . 

Hence Jz Tz z= = . 

Since ( ) ( )T X I X⊆ implies there exists v X∈ such that z Tz Iv= = . 

To prove Sv z= , put ,x v y z= = in (3.1.2), we get 
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{ }( , ) ( , ), ( , ), ( , ), ( , ), ( , )d Sv Tz d Iv Jz d Iv Sv d Jz Tz d Iv Tz d Jz Svφ≤  

letting n → ∞ and using the condition z Tz Iv= = ,we have 

{ }( , ) ( , ), ( , ), ( , ), ( , ), ( , )d Sv z d z z d z Sv d z z d z z d z Svφ≤
 

{ }( , ) 0, ( , ), 0,0, ( , )d Sv z d z Sv d z Svφ≤  

( , ) ( , ) ( , )d Sv z d z Sv d z Svφ≤ < , a contradiction if Sv z≠  

( , ) 0d Sv z = or Sv z= . 

Therefore z Sv Iv= = . 

Since the pair (S,I) is compatible mappings of type(P), we have 

( , ) 0d SSv IIv = .This gives ( , ) 0d Sz Iz = or Sz Iz= . 

To prove Sz z= , put ,x z y z= = in (3.1.2), we get 

{ }( , ) ( , ), ( , ), ( , ), ( , ), ( , )d Sz Tz d Iz Jz d Iz Sz d Jz Tz d Iz Tz d Jz Szφ≤  

{ }( , ) ( , ), 0,0, ( , ), ( , )d Sz z d Sz Jz d Sz Tz d Sz zφ≤  

( , ) ( , ) ( , )d Sz z d Sz Jz d Sz Jzφ≤ < , a contradiction if Sz z≠ . 

( , ) 0d Sz z = or Sz z= . 

Therefore z Sz Iz= = . 

Since Sz Iz Jz Tz z= = = = , we get z is a common fixed point of S, I, J and T. The uniqueness of the fixed point 

can be easily proved. 

DISCUSSION 

From the example (2.4), clearly the pairs (S, I) and (T, J) are not commutative and it can be easily verified that the 

mappings are not compatible, compatible mappings of type(A), weak compatible of type(A) and also not compatible 

of type(B) but they are compatible of type(P). 

CONCLUSION 

 In the above mentioned process a common fixed point is generated and is unique. In fact

 

1/4 is the unique common 

fixed point for the four self maps.  
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